CENP-F couples cargo to growing and shortening microtubule ends

نویسندگان

  • Gil Kanfer
  • Martin Peterka
  • Vladimir K. Arzhanik
  • Alexei L. Drobyshev
  • Fazly I. Ataullakhanov
  • Vladimir A. Volkov
  • Benoît Kornmann
چکیده

Dynamic microtubule ends exert pulling and pushing forces on intracellular membranes and organelles. However, the mechanical linkage of microtubule tips to their cargoes is poorly understood. CENP-F is a nonmotor microtubule-binding protein that participates in microtubule binding at kinetochores and in the mitotic redistribution of the mitochondrial network. CENP-F-driven mitochondrial transport is linked to growing microtubule tips, but the underlying molecular mechanisms are unknown. Here we show that CENP-F tracks growing microtubule ends in living cells. In vitro reconstitution demonstrates that microtubule tips can transport mitochondria and CENP-F-coated artificial cargoes over micrometer-long distances during both growing and shrinking phases. Based on these and previous observations, we suggest that CENP-F might act as a transporter of mitochondria and other cellular cargoes by attaching them to dynamic microtubule ends during both polymerization and depolymerization of tubulin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetochore–microtubule attachment throughout mitosis potentiated by the elongated stalk of the kinetochore kinesin CENP-E

Centromere protein E (CENP-E) is a highly elongated kinesin that transports pole-proximal chromosomes during congression in prometaphase. During metaphase, it facilitates kinetochore-microtubule end-on attachment required to achieve and maintain chromosome alignment. In vitro CENP-E can walk processively along microtubule tracks and follow both growing and shrinking microtubule plus ends. Neith...

متن کامل

EB1 promotes microtubule dynamics by recruiting Sentin in Drosophila cells

Highly conserved EB1 family proteins bind to the growing ends of microtubules, recruit multiple cargo proteins, and are critical for making dynamic microtubules in vivo. However, it is unclear how these master regulators of microtubule plus ends promote microtubule dynamics. In this paper, we identify a novel EB1 cargo protein, Sentin. Sentin depletion in Drosophila melanogaster S2 cells, simil...

متن کامل

Centromere protein F includes two sites that couple efficiently to depolymerizing microtubules

Firm attachments between kinetochores and dynamic spindle microtubules (MTs) are important for accurate chromosome segregation. Centromere protein F (CENP-F) has been shown to include two MT-binding domains, so it may participate in this key mitotic process. Here, we show that the N-terminal MT-binding domain of CENP-F prefers curled oligomers of tubulin relative to MT walls by approximately fi...

متن کامل

Long tethers provide high-force coupling of the Dam1 ring to shortening microtubules.

Microtubule kinetochore attachments are essential for accurate mitosis, but how these force-generating connections move chromosomes remains poorly understood. Processive motion at shortening microtubule ends can be reconstituted in vitro using microbeads conjugated to the budding yeast kinetochore protein Dam1, which forms microtubule-encircling rings. Here, we report that, when Dam1 is linked ...

متن کامل

In Vitro Reconstitution of the Functional Interplay between MCAK and EB3 at Microtubule Plus Ends

The kinesin-13 family member mitotic centromere-associated kinesin (MCAK) is a potent microtubule depolymerase. Paradoxically, in cells it accumulates at the growing, rather than the shortening, microtubule plus ends. This plus-end tracking behavior requires the interaction between MCAK and members of the end-binding protein (EB) family, but the effect of EBs on the microtubule-destabilizing ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2017